On the Robustness of Optimal Scaling for Random Walk Metropolis Algorithms

نویسندگان

  • Mylène Bédard
  • Jeffrey S. Rosenthal
چکیده

In this thesis, we study the optimal scaling problem for sampling from a target distribution of interest using a random walk Metropolis (RWM) algorithm. In order to implement this method, the selection of a proposal distribution is required, which is assumed to be a multivariate normal distribution with independent components. We investigate how the proposal scaling (i.e. the variance of the normal distribution) should be selected for best performance of the algorithm. The d-dimensional target distribution we consider is formed of independent components, each of which has its own scaling term θ−2 j (d) (j = 1, . . . , d). This constitutes an extension of the d-dimensional iid target considered by Roberts, Gelman & Gilks (1997) who showed that for large d, the acceptance rate should be tuned to 0.234 for optimal performance of the algorithm. In a similar fashion, we show that for the aforementioned framework, the relative efficiency of the algorithm can be characterized by its overall acceptance rate. We first propose a method to determine the optimal form for the proposal

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Scaling of Metropolis-coupled Markov Chain Monte Carlo

We consider optimal temperature spacings for Metropolis-coupled Markov chain Monte Carlo (MCMCMC) and Simulated Tempering algorithms. We prove that, under certain conditions, it is optimal to space the temperatures so that the proportion of temperature swaps which are accepted is approximately 0.234. This generalises related work by physicists, and is consistent with previous work about optimal...

متن کامل

On the efficiency of pseudo-marginal random walk Metropolis algorithms

We examine the behaviour of the pseudo-marginal random walk Metropolis algorithm, where evaluations of the target density for the accept/reject probability are estimated rather than computed precisely. Under relatively general conditions on the target distribution, we obtain limiting formulae for the acceptance rate and for the expected squared jump distance, as the dimension of the target appr...

متن کامل

Towards optimal scaling of metropolis-coupled Markov chain Monte Carlo

We consider optimal temperature spacings for Metropolis-coupled Markov chain Monte Carlo (MCMCMC) and Simulated Tempering algorithms. We prove that, under certain conditions, it is optimal (in terms of maximising the expected squared jumping distance) to space the temperatures so that the proportion of temperature swaps which are accepted is approximately 0.234. This generalises related work by...

متن کامل

Optimal scaling of discrete approximations to Langevin diffusions

We consider the optimal scaling problem for proposal distributions in Hastings-Metropolis algorithms derived from Langevin diffusions. We prove an asymptotic diffusion limit theorem and show that the relative efficiency of the algorithm can be characterised by its overall acceptance rate, independently of the target distribution. The asymptotically optimal acceptance rate is 0.574. We show that...

متن کامل

Scaling Limits for the Transient Phase of Local Metropolis-Hastings Algorithms

This paper considers high-dimensional Metropolis and Langevin algorithms in their initial transient phase. In stationarity, these algorithms are well-understood and it is now well-known how to scale their proposal distribution variances. For the random walk Metropolis algorithm, convergence during the transient phase is extremely regular to the extent that the algorithm’s sample path actually r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006